论文标题
通讯de Langlands locale $ p $ -Adique et Anneaux de Kisin
Correspondance de Langlands locale $p$-adique et anneaux de Kisin
论文作者
论文摘要
我们使用$ {\ MATHCAL B} $ - ADIC完成和$ {\ Mathrm {gl}} _ 2({\ Mathbf Q} _p)$的$ {\ Mathrm {gl}} _ 2({\ Mathbf q} _p)$的通信,以授予Kisin的戒指和附件的$ $ $ $ $ $ $ {$)古典Langlands对应。这尤其给出了超矛盾案例中几何breuil-mézard的统一证明。
We use a ${\mathcal B}$-adic completion and the $p$-adic local Langlands correspondence for ${\mathrm {GL}}_2({\mathbf Q}_p )$ to give a construction of Kisin's rings and the attached universal Galois representations (in dimension 2 and for ${\mathbf Q}_p$) directly from the classical Langlands correspondence. This gives, in particular, a uniform proof of the geometric Breuil-Mézard conjecture in the supercuspidal case.