论文标题
二维六边形晶体工程Majoragan角落模式
Engineering Majorana corner modes from two-dimensional hexagonal crystals
论文作者
论文摘要
二阶拓扑绝缘子可以通过具有强旋转轨道耦合和平面齐曼场的二维材料进行设计。在靠近超导体的情况下,可以在二维材料中诱导拓扑超导相,该材料在两个锯齿形边缘之间的交点处有Majoraana角模式。六角形晶格中的两种类型的紧密绑定模型,其中包括$ p_ {z} $或$ p_ {x,y} $ orbit(s)在每个晶格站点中,都应用于拓扑超导阶段的工程师二维材料。在这两个模型中,诱导二阶拓扑超导体的条件都需要在两个sublattices中的面内Zeeman字段或超导配对参数的不均匀值。第二个模型的有限尺寸效应比第一个模型的尺寸较弱。
Second order topological insulator can be engineered from two-dimensional materials with strong spin-orbit coupling and in-plane Zeeman field. In proximity to superconductor, topological superconducting phase could be induced in the two-dimensional materials, which host Majorana corner modes at the intersection between two zigzag edges. Two types of tight binding models in hexagonal lattice, which include $p_{z}$ or $p_{x,y}$ orbit(s) in each lattice site, are applied to engineer two-dimensional materials in topological superconducting phase. In both models, the condition that induces the second order topological superconductor requires nonuniform value of either in-plane Zeeman fields or superconductor pairing parameters in two sublattices. The finite size effect of the second model is weaker than that of the first model.