论文标题

用于资源约束项目调度问题的基于MAP-ELITE

MAP-Elites based Hyper-Heuristic for the Resource Constrained Project Scheduling Problem

论文作者

Chand, Shelvin, Rajesh, Kousik, Chandra, Rohitash

论文摘要

资源约束项目调度问题(RCPSP)是NP-HARD组合优化问题。 RCPSP的目的是安排一组活动,而不会违反任何活动优先级或资源约束。近年来,研究人员已经摆脱了复杂的解决方案方法,例如元启发式方法和精确的数学方法,转向了更简单的直观解决方案,例如优先规则。这通常涉及使用基于遗传编程的超高式(GPHH)来发现可以应用于新的看不见案件的新优先级规则。影响GPHH的一个常见问题是进化的多样性,这通常导致质量差。在本文中,我们提出了一个基于MAP-ELITE的超高式(MEHH),以自动发现RCPSP的有效优先级规则。 Map-Elites使用基于优质多样性的方法,该方法明确维护了沿多个特征维度表征的各种解决方案的档案。为了证明我们提出的超级女性的好处,我们将整体绩效与人类专家提出的传统GPHH和优先规则进行了比较。我们的结果表明多样性和绩效都有很大的改善。特别是,我们看到了现有文献中未经研究的较大实例的重大改进。

The resource constrained project scheduling problem (RCPSP) is an NP-Hard combinatorial optimization problem. The objective of RCPSP is to schedule a set of activities without violating any activity precedence or resource constraints. In recent years researchers have moved away from complex solution methodologies, such as meta heuristics and exact mathematical approaches, towards more simple intuitive solutions like priority rules. This often involves using a genetic programming based hyper-heuristic (GPHH) to discover new priority rules which can be applied to new unseen cases. A common problem affecting GPHH is diversity in evolution which often leads to poor quality output. In this paper, we present a MAP-Elites based hyper-heuristic (MEHH) for the automated discovery of efficient priority rules for RCPSP. MAP-Elites uses a quality diversity based approach which explicitly maintains an archive of diverse solutions characterised along multiple feature dimensions. In order to demonstrate the benefits of our proposed hyper-heuristic, we compare the overall performance against a traditional GPHH and priority rules proposed by human experts. Our results indicate strong improvements in both diversity and performance. In particular we see major improvements for larger instances which have been under-studied in the existing literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源