论文标题

推荐中的可解释公平性

Explainable Fairness in Recommendation

论文作者

Ge, Yingqiang, Tan, Juntao, Zhu, Yan, Xia, Yinglong, Luo, Jiebo, Liu, Shuchang, Fu, Zuohui, Geng, Shijie, Li, Zelong, Zhang, Yongfeng

论文摘要

现有关于公平意识建议的研究主要集中于公平性的量化和公平建议模型的发展,这两个研究都不是一个更实质性的问题 - 确定了推荐模型差异的根本原因。对于推荐系统设计人员,至关重要的是了解固有的建议机制,并提供有关如何改善决策者模型公平性的见解。幸运的是,随着可解释的AI的快速发展,我们可以使用模型解释性来了解模型(UN)公平性。在本文中,我们研究了可解释的公平性问题,这有助于了解系统为什么公平或不公平,并指导具有更明智和统一的方法的公平推荐系统的设计。特别是,我们专注于具有功能感知的建议和暴露不公平的共同环境,但是拟议的可解释公平框架是一般的,可以应用于其他建议设置和公平定义。我们提出了一个反事实可解释的公平框架,称为CEF,该框架生成了有关模型公平性的解释,可以改善公平性而不会显着损害性能。CEF框架提出了优化问题,以了解输入特征的“最小值”更改,以将建议结果更改为公平水平。基于每个功能的反事实建议结果,我们根据公平性的权衡来计算解释性得分,以对所有基于功能的解释进行排名,并选择最高的解释作为公平说明。

Existing research on fairness-aware recommendation has mainly focused on the quantification of fairness and the development of fair recommendation models, neither of which studies a more substantial problem--identifying the underlying reason of model disparity in recommendation. This information is critical for recommender system designers to understand the intrinsic recommendation mechanism and provides insights on how to improve model fairness to decision makers. Fortunately, with the rapid development of Explainable AI, we can use model explainability to gain insights into model (un)fairness. In this paper, we study the problem of explainable fairness, which helps to gain insights about why a system is fair or unfair, and guides the design of fair recommender systems with a more informed and unified methodology. Particularly, we focus on a common setting with feature-aware recommendation and exposure unfairness, but the proposed explainable fairness framework is general and can be applied to other recommendation settings and fairness definitions. We propose a Counterfactual Explainable Fairness framework, called CEF, which generates explanations about model fairness that can improve the fairness without significantly hurting the performance.The CEF framework formulates an optimization problem to learn the "minimal" change of the input features that changes the recommendation results to a certain level of fairness. Based on the counterfactual recommendation result of each feature, we calculate an explainability score in terms of the fairness-utility trade-off to rank all the feature-based explanations, and select the top ones as fairness explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源