论文标题

实验室:基于领导者辅助的优化算法

LAB: A Leader-Advocate-Believer Based Optimization Algorithm

论文作者

Reddy, Ruturaj, Kulkarni, Anand J, Krishnasamy, Ganesh, Shastri, Apoorva S, Gandomi, Amir H.

论文摘要

该手稿介绍了一种新的社会启发的元神经技术,称为基于领导者 - 顾问 - 基于核心的优化算法(实验室),用于工程和全球优化问题。拟议的算法灵感来自一个基于AI的竞争行为,该行为是一个基于AI的竞争行为,同时同时改善自己并确立角色(领导者,倡导者,信徒)。计算时间和功能评估中的实验室性能是使用其他元启发式算法进行基准测试的。除了基准问题外,实验室算法还用于解决具有挑战性的工程问题,包括磨料水流加工,电气排放加工,微型缓冲过程和过程参数优化,以在最小数量润滑环境中转动钛合金。结果优于其他算法,例如萤火虫算法,共同智能的变化,遗传算法,模拟退火,粒子群优化和多核心智能。这项研究的结果强调,在功能评估和计算时间方面,实验室优于其他算法。还讨论了实验室算法的突出特征及其局限性。

This manuscript introduces a new socio-inspired metaheuristic technique referred to as Leader-Advocate-Believer based optimization algorithm (LAB) for engineering and global optimization problems. The proposed algorithm is inspired by the AI-based competitive behaviour exhibited by the individuals in a group while simultaneously improving themselves and establishing a role (Leader, Advocate, Believer). LAB performance in computational time and function evaluations are benchmarked using other metaheuristic algorithms. Besides benchmark problems, the LAB algorithm was applied for solving challenging engineering problems, including abrasive water jet machining, electric discharge machining, micro-machining processes, and process parameter optimization for turning titanium alloy in a minimum quantity lubrication environment. The results were superior to the other algorithms compared such as Firefly Algorithm, Variations of Co-hort Intelligence, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimisation, and Multi-Cohort Intelligence. The results from this study highlighted that the LAB outperforms the other algorithms in terms of function evaluations and computational time. The prominent features of the LAB algorithm along with its limitations are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源