论文标题
Shtukas的特殊周期已关闭
Special cycles for Shtukas are closed
论文作者
论文摘要
在本文中,我们给出了保罗·布鲁特曼(Paul Breutmann)定理的不同证明:对于平滑的投影曲线$ x $,$ \ mathcal {h} $ $ x $ $ x $和封闭的嵌入到另一个平滑的仿射组方案$ \ MATHCAL {G} $上$ sht^{r} _ {\ mathcal {h}} \ to sht^{r} _ {\ Mathcal {g}} $是示意图,有限的和不受影响的。该结果使一个人能够在shtukas模量堆栈上定义特殊周期。
In this paper we give a different proof of a theorem of Paul Breutmann: for a Bruhat-Tits group scheme $\mathcal{H}$ over a smooth projective curve $X$ and a closed embedding into another smooth affine group scheme $\mathcal{G}$, the induced map on the moduli of Shtukas $Sht^{r}_{\mathcal{H}}\to Sht^{r}_{\mathcal{G}}$ is schematic, finite and unramified. This result enables one to define special cycles on the moduli stack of Shtukas.