论文标题

希尔伯特太空基础和希尔伯特的第八个问题

The Hilbert space basis and Hilbert's eighth problem

论文作者

Kirill, Kapitonets

论文摘要

本文认为,在任何间隔$ \ {(a,a,b)_r \} _ {r = 1}^{r = 1}^{\ in \ in \ in \ in \ mathbb {r rathbb {r rathbb {r rathbb {r} $上。根据$ \ hat {h} _r $中的真实正交多项式的零的定理所示,存在一个完整的正交基础$ \ {f(x)_k \} _ {k = 1} $ f(x)\ in \ {f(x)_k \} _ {k = 1}^{\ infty} $具有零,那么这些零是简单而真实的。总体化的Hardy函数$ z(σ,t)= \reζ(σ+it)e^{iθ(t)} $。显示出在希尔伯特太空中$ \ hat {h} _r $存在完整的基础$ \ {z(λ_k,t \} _ {k = 1}^{\ infty} $ whend $ z(t)\ in \ {z(λ_k,t \} _ {k = 1}^{\ infty} $时,$λ_k= 1/2 $,因此hardy函数$ z(t)=ζ(1/2+it)

The paper considers the Hilbert space $\hat{H}_r$ of real functions summable with the square $L^2(a,b)_r$ on any interval $\{(a,b)_r\}_{r=1}^{\infty}\in \mathbb{R}$. It is shown on the basis of the theorem on zeros of real orthogonal polynomials if in $\hat{H}_r$ there exists a complete orthonormal basis $\{f(x)_k\}_{k=1}^{\infty}$ and the function $f(x)\in\{f(x)_k\}_{k=1}^{\infty}$ has zeros, then these zeros are simple and real. The generalized Hardy function $Z(σ,t)=\Reζ(σ+it)e^{iθ(t)}$ is considered. It is shown that in the Hilbert space $\hat{H}_r$ there exists a complete basis $\{Z(λ_k,t\}_{k=1}^{\infty}$ where $λ_k\in\mathbb{Q}$ and $Z(t)\in\{Z(λ_k,t\}_{k=1}^{\infty}$ when $λ_k=1/2$, hence the Hardy function $Z(t)=ζ(1/2+it)e^{iθ(t)}$ has all simple and real zeros.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源