论文标题
h $ _2 $ o miranda的纵向变化
Longitudinal Variation of H$_2$O Ice Absorption on Miranda
论文作者
论文摘要
外部太阳系中的许多潮汐锁定的冰卫星都以近红外(NIR)H $ _2 $ o冰的吸收带的强度显示出领先/尾随的半球不对称性,其中吸收带在领先的半球上更强。这通常归因于磁层照射效应和影响园艺的结合,这些效果可以改变晶粒尺寸,暴露新鲜冰并产生深色污染的化合物,从而降低吸收特征的强度。先前的研究确定了这四个最大的古典乌拉尼亚卫星上的领先/拖延不对称性,但在最小,最内部的古典月亮米兰达(Miranda)上没有发现明显的领先/拖尾不对称性。我们进行了一项广泛的观察运动,以调查H $ _2 $ o冰的NIR光谱签名的变化,并在米兰达的北半球上经度经度。我们在ARC 350万望远镜上获得了三个新光谱,并在Gemini North上获得了带有Gnirs的4个新光谱。我们的分析还包括3个未发表的未发表和7个先前在3M IRTF上使用SPEX拍摄的光谱。我们确认,Miranda的强度没有实质性/尾随的半球形不对称性,其强度是其H $ _2 $ O O冰的吸收功能。我们还找到证据表明,在1.5- $ $ m h $ _2 $ _2 $ o冰带中,在其他Uranian卫星上看不到的抗肌酸/亚龙肌不对称,这表明其他内源性或外生过程会影响H $ _2 $ O冰乐队在Miranda上的纵向分布。
Many tidally locked icy satellites in the outer Solar System show leading/trailing hemispherical asymmetries in the strength of near-infrared (NIR) H$_2$O ice absorption bands, in which the absorption bands are stronger on the leading hemisphere. This is often attributed to a combination of magnetospheric irradiation effects and impact gardening, which can modify grain size, expose fresh ice, and produce dark contaminating compounds that reduce the strength of absorption features. Previous research identified this leading/trailing asymmetry on the four largest classical Uranian satellites but did not find a clear leading/trailing asymmetry on Miranda, the smallest and innermost classical moon. We undertook an extensive observational campaign to investigate variations of the NIR spectral signature of H$_2$O ice with longitude on Miranda's northern hemisphere. We acquired 22 new spectra with the TripleSpec spectrograph on the ARC 3.5m telescope and 4 new spectra with GNIRS on Gemini North. Our analysis also includes 3 unpublished and 7 previously published spectra taken with SpeX on the 3m IRTF. We confirm that Miranda has no substantial leading/trailing hemispherical asymmetry in the strength of its H$_2$O ice absorption features. We additionally find evidence for an anti-Uranus/sub-Uranus asymmetry in the strength of the 1.5-$μ$m H$_2$O ice band that is not seen on the other Uranian satellites, suggesting that additional endogenic or exogenic processes influence the longitudinal distribution of H$_2$O ice band strengths on Miranda.