论文标题

深度学:具有深度学习的迭代速度模型构建

Deep-tomography: iterative velocity model building with deep learning

论文作者

Muller, Ana Paula O., Bom, Clecio R., Costa, Jesse C., Klatt, Matheus, Faria, Elisangela L., Silva, Bruno dos Santos, de Albuquerque, Marcelo P., de Albuquerque, Marcio P.

论文摘要

速度模型的准确估算对于地震成像至关重要。常规方法,例如断层扫描和全波倒置(FWI),可以获得适当的速度模型;但是,它们需要强烈而专业的人类监督,并消耗大量时间和计算资源。近年来,一些作品研究了深度学习(DL)算法,以直接从镜头或迁移的角度面板中获得速度模型,从而获得了对合成模型的鼓励预测。本文提出了一种新的流程,以增加使用DL恢复的速度模型的复杂性。受到常规的地球物理速度模型构建方法的启发,而不是一步一步预测整个模型,而是迭代地预测速度模型。当我们训练DL算法以确定下一个迭代的一定精度/分辨率的速度模型时,我们实现了过程的迭代性质;我们将此过程称为深层学。从大致接近真实模型的初始模型开始,即使在像Marmousi模型(如Marmousi模型”(如Marmousi)的完整数据中,Deep-Tomography也能够预测适当的最终模型。

The accurate and fast estimation of velocity models is crucial in seismic imaging. Conventional methods, like Tomography and Full-Waveform Inversion (FWI), obtain appropriate velocity models; however, they require intense and specialized human supervision and consume much time and computational resources. In recent years, some works investigated deep learning(DL) algorithms to obtain the velocity model directly from shots or migrated angle panels, obtaining encouraging predictions of synthetic models. This paper proposes a new flow to increase the complexity of velocity models recovered with DL. Inspired by the conventional geophysical velocity model building methods, instead of predicting the entire model in one step, we predict the velocity model iteratively. We implement the iterative nature of the process when, for each iteration, we train the DL algorithm to determine the velocity model with a certain level of precision/resolution for the next iteration; we name this process as Deep-Tomography. Starting from an initial model that roughly approaches the true model, the Deep-Tomography is able to predict an appropriate final model, even in complete unseen data, like the Marmousi model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源