论文标题
三线截面功能的分解
Decomposition of Triple Collinear Splitting Functions
论文作者
论文摘要
在运动区域,三个颗粒$ i $,$ j $,$ k $的是共线,多方散射幅度将因子分解为三线分裂功能的产物和一个多方散射幅度,并具有两个较少的粒子。这些三重线分裂功能既包含迭代的单个未解决的贡献,又包含真正的双重未解决的贡献。我们通过根据两粒子拆分功能的产品重写已知的三重颜料分裂功能来显式,而当$ \ {i,j,k \} $中的任何两个是colinear时,其余的是有限的。我们分析了其余部分存在的所有未解决的奇异点。
In the kinematic region where three particles $i$, $j$, $k$ are collinear, the multi-parton scattering amplitudes factorise into a product of a triple collinear splitting function and a multi-parton scattering amplitude with two fewer particles. These triple collinear splitting functions contain both iterated single unresolved contributions, and genuine double unresolved contributions. We make this explicit by rewriting the known triple collinear splitting functions in terms of products of two-particle splitting functions, and a remainder that is explicitly finite when any two of $\{i,j,k\}$ are collinear. We analyse all of the single unresolved singularities present in the remainder.