论文标题

SUES-200:一个多高度的多场景跨视图图像基准在无人机和卫星上

SUES-200: A Multi-height Multi-scene Cross-view Image Benchmark Across Drone and Satellite

论文作者

Zhu, Runzhe, Yin, Ling, Yang, Mingze, Wu, Fei, Yang, Yuncheng, Hu, Wenbo

论文摘要

跨视图图像匹配旨在匹配从不同平台获得的同一目标场景的图像。随着无人机技术的快速发展,神经网络模型的跨视图匹配已成为无人机位置或导航的广泛选择。但是,现有的公共数据集不包括由无人机在不同高度上获得的图像,并且场景类型相对均匀,这在评估模型适应复杂和不断变化的场景的能力时会产生问题。在此期间,我们提出了一个名为SUES-200的新的跨视图数据集来解决这些问题。 SUE-200包含无人机在四个不同高度上获取的24120张图像,并包含相同目标场景的相应卫星视图图像。据我们所知,SUE-200是第一个考虑由飞行在不同高度飞行的无人机捕获的航空摄影中产生的差异的公共数据集。此外,我们开发了一种评估跨视图匹配模型的有效培训,测试和评估的评估,根据该模型,我们全面分析了九个体系结构的性能。然后,我们提出了一个可与SUE-200一起使用的强大基线模型。实验结果表明,SUE-200可以帮助该模型学习无人机高度的高度判别特征。

Cross-view image matching aims to match images of the same target scene acquired from different platforms. With the rapid development of drone technology, cross-view matching by neural network models has been a widely accepted choice for drone position or navigation. However, existing public datasets do not include images obtained by drones at different heights, and the types of scenes are relatively homogeneous, which yields issues in assessing a model's capability to adapt to complex and changing scenes. In this end, we present a new cross-view dataset called SUES-200 to address these issues. SUES-200 contains 24120 images acquired by the drone at four different heights and corresponding satellite view images of the same target scene. To the best of our knowledge, SUES-200 is the first public dataset that considers the differences generated in aerial photography captured by drones flying at different heights. In addition, we developed an evaluation for efficient training, testing and evaluation of cross-view matching models, under which we comprehensively analyze the performance of nine architectures. Then, we propose a robust baseline model for use with SUES-200. Experimental results show that SUES-200 can help the model to learn highly discriminative features of the height of the drone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源