论文标题

弹性模型的屈服过渡中的有限端序点

Finite-disorder critical point in the yielding transition of elasto-plastic models

论文作者

Rossi, Saverio, Biroli, Giulio, Ozawa, Misaki, Tarjus, Gilles, Zamponi, Francesco

论文摘要

加载后,无定形固体会表现出脆性的屈服,突然形成宏观剪切带,导致断裂或延性屈服,并带有多种塑料事件,导致均匀流动。最近有人提出,随后质疑这两个方案是通过尖锐的临界点隔开的,这是某种控制参数的函数,该参数表征了固有无序强度和固体的稳定性程度。为了解决此问题,我们对具有长距离和各向异性逼真的相互作用内核进行了大量的数值模拟,以两个和三个维度进行了远距离和各向异性逼真的相互作用内核。我们的结果为有限端的临界点提供了明确的证据,将脆性和延性屈服分开,我们提供了2D和3D中关键指数的估计。

Upon loading, amorphous solids can exhibit brittle yielding, with the abrupt formation of macroscopic shear bands leading to fracture, or ductile yielding, with a multitude of plastic events leading to homogeneous flow. It has been recently proposed, and subsequently questioned, that the two regimes are separated by a sharp critical point, as a function of some control parameter characterizing the intrinsic disorder strength and the degree of stability of the solid. In order to resolve this issue, we have performed extensive numerical simulations of athermally driven elasto-plastic models with long-range and anisotropic realistic interaction kernels in two and three dimensions. Our results provide clear evidence for a finite-disorder critical point separating brittle and ductile yielding, and we provide an estimate of the critical exponents in 2D and 3D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源