论文标题

图形的超级统治数的一些结果

Some results on the super domination number of a graph

论文作者

Ghanbari, Nima

论文摘要

令$ g =(v,e)$为一个简单的图。 $ g $的主导集是一个子集$ s \ subseteq v $,因此每个顶点$ s $中的每个顶点至少与$ s $中的至少一个顶点相邻。由$γ(g)$表示的最小统治$ g $的基数是$ g $的统治数。如果每个顶点$ u \ in \ In \ overline {s} = v-s $,则称为$ g $的超级统治集$ s $,在s $中存在$ v \,以至于$ n(v)\ cap \ cap \ overline {s} = \ {u \ \ \ \} $。 $γ_{sp}(g)$表示的最小超级主导套件的基数是$ g $的超级统治数。在本文中,我们研究了某些图类别的超级统治数,并为某些图形操作提供了尖锐的边界。

Let $G=(V,E)$ be a simple graph. A dominating set of $G$ is a subset $S\subseteq V$ such that every vertex not in $S$ is adjacent to at least one vertex in $S$. The cardinality of a smallest dominating set of $G$, denoted by $γ(G)$, is the domination number of $G$. A dominating set $S$ is called a super dominating set of $G$, if for every vertex $u\in \overline{S}=V-S$, there exists $v\in S$ such that $N(v)\cap \overline{S}=\{u\}$. The cardinality of a smallest super dominating set of $G$, denoted by $γ_{sp}(G)$, is the super domination number of $G$. In this paper, we study super domination number of some graph classes and present sharp bounds for some graph operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源