论文标题
线性化玻尔兹曼操作员的紧凑特性,用于谐振碰撞的多原子气体
Compactness property of the linearized Boltzmann operator for a polyatomic gas undergoing resonant collisions
论文作者
论文摘要
在本文中,我们研究了线性化玻尔兹曼操作员的紧凑特性,其分子经历共振碰撞的背景下。谐振碰撞规则的特殊结构使该问题与速度相关的结构,与速度相关的速度相关,并与内部能量相关的情况相邻。我们的分析是基于由于分子的内部能量而对贡献的特定处理。我们还提出了在单变性病例中相同紧凑性能的Grad证明的几何变体。
In this paper, we investigate a compactness property of the linearized Boltzmann operator in the context of a polyatomic gas whose molecules undergo resonant collisions. The peculiar structure of resonant collision rules allows to tensorize the problem into a velocity-related one, neighbouring the monatomic case, and an internal energy-related one. Our analysis is based on a specific treatment of the contributions due to the internal energy of the molecules. We also propose a geometric variant of Grad's proof of the same compactness property in the monatomic case.