论文标题

基于关键点的手语翻译没有光泽

Keypoint based Sign Language Translation without Glosses

论文作者

Kim, Youngmin, Kwak, Minji, Lee, Dain, Kim, Yeongeun, Baek, Hyeongboo

论文摘要

与手语识别(SLR)相比,手语翻译(SLT)是一项尚未相对较多研究的任务。但是,SLR是一项认识到手语的独特语法的研究,该语言与口语不同,并且存在一个非障碍者无法轻易解释的问题。因此,我们将解决在手语视频中直接翻译口语的问题。为此,我们提出了一种基于签名者的骨架点执行翻译的新关键归一化方法,并以手语翻译将这些点稳定地归一化。根据身体部位的不同,它通过定制的标准化方法有助于提高性能。此外,我们提出了一种随机框架选择方法,该方法可以同时实现框架增强和采样。最后,它通过基于注意力的翻译模型将其转化为口语。我们的方法可以以一种可以在没有光泽的情况下应用于数据集的方式应用于各种数据集。此外,定量实验评估证明了我们方法的卓越性。

Sign Language Translation (SLT) is a task that has not been studied relatively much compared to the study of Sign Language Recognition (SLR). However, the SLR is a study that recognizes the unique grammar of sign language, which is different from the spoken language and has a problem that non-disabled people cannot easily interpret. So, we're going to solve the problem of translating directly spoken language in sign language video. To this end, we propose a new keypoint normalization method for performing translation based on the skeleton point of the signer and robustly normalizing these points in sign language translation. It contributed to performance improvement by a customized normalization method depending on the body parts. In addition, we propose a stochastic frame selection method that enables frame augmentation and sampling at the same time. Finally, it is translated into the spoken language through an Attention-based translation model. Our method can be applied to various datasets in a way that can be applied to datasets without glosses. In addition, quantitative experimental evaluation proved the excellence of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源