论文标题

朝着积极的情绪启发进行多转弯的善解人意对话

Towards Multi-Turn Empathetic Dialogs with Positive Emotion Elicitation

论文作者

Wang, Shihang, Xu, Xinchao, Wu, Wenquan, Niu, Zheng-Yu, Wu, Hua, Wang, Haifeng

论文摘要

情感支持是许多实际情况的重要技能,包括关心老年人,心理健康支持和客户服务聊天。本文介绍了一项具有积极情绪激发的同情对话生成的新任务,以促进用户的积极情绪,类似于人类之间的情感支持。在此任务中,代理商在多转话中引起用户的积极情绪的目标进行了善解人意的响应。为了促进对这项任务的研究,我们收集了一个以积极的情感启发的大规模情感对话数据集,称为posemodial(大约820k对话,3m的话语)。在这些对话中,代理商试图指导用户从任何可能的初始情绪状态,例如悲伤,到积极的情绪状态。然后,我们提出具有新型损耗函数设计的正情绪引导的对话生成模型。这种损失功能鼓励对话模型不仅引起用户的积极情绪,而且还可以确保与整个对话框一起进行平稳的情绪过渡。最后,我们在posemodial上建立基准结果,我们将发布该数据集和相关的源代码,以促进未来的研究。

Emotional support is a crucial skill for many real-world scenarios, including caring for the elderly, mental health support, and customer service chats. This paper presents a novel task of empathetic dialog generation with positive emotion elicitation to promote users' positive emotions, similar to that of emotional support between humans. In this task, the agent conducts empathetic responses along with the target of eliciting the user's positive emotions in the multi-turn dialog. To facilitate the study of this task, we collect a large-scale emotional dialog dataset with positive emotion elicitation, called PosEmoDial (about 820k dialogs, 3M utterances). In these dialogs, the agent tries to guide the user from any possible initial emotional state, e.g., sadness, to a positive emotional state. Then we present a positive-emotion-guided dialog generation model with a novel loss function design. This loss function encourages the dialog model to not only elicit positive emotions from users but also ensure smooth emotional transitions along with the whole dialog. Finally, we establish benchmark results on PosEmoDial, and we will release this dataset and related source code to facilitate future studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源