论文标题
中央基本环的理想和因子环
Ideals and Factor Rings of Centrally Essential Rings
论文作者
论文摘要
事实证明,带有中心$ z(r)$的环$ r $,使模块$ r_ {z(r)} $是模块$ z(r)_ {z(r)} $的重要扩展,不一定是正确的quasi-invariant,即不一定是ring $ r $的最大正确理想。我们使用中心本质来获得足以使所有最大权利理想都是理想的条件
It is proved that the ring $R$ with center $Z(R)$, such that the module $R_{Z(R)}$ is an essential extension of the module $Z(R)_{Z(R)}$, is not necessarily right quasi-invariant, i.e., maximal right ideals of the ring $R$ are not necessarily ideals. We use central essentiality to obtain conditions which are sufficient to the property that all maximal right ideals are ideals