论文标题

部分可观测时空混沌系统的无模型预测

Stackelberg Routing of Autonomous Cars in Mixed-Autonomy Traffic Networks

论文作者

Kolarich, Maxwell, Mehr, Negar

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

As autonomous cars are becoming tangible technologies, road networks will soon be shared by human-driven and autonomous cars. However, humans normally act selfishly which may result in network inefficiencies. In this work, we study increasing the efficiency of mixed-autonomy traffic networks by routing autonomous cars altruistically. We consider a Stackelberg routing setting where a central planner can route autonomous cars in the favor of society such that when human-driven cars react and select their routes selfishly, the overall system efficiency is increased. We develop a Stackelberg routing strategy for autonomous cars in a mixed-autonomy traffic network with arbitrary geometry. We bound the price of anarchy that our Stackelberg strategy induces and prove that our proposed Stackelberg routing will reduce the price of anarchy, i.e. it increases the network efficiency. Specifically, we consider a non-atomic routing game in a mixed-autonomy setting with affine latency functions and develop an extension of the SCALE Stackelberg strategy for mixed-autonomy networks. We derive an upper bound on the price of anarchy that this Stackelberg routing induces and demonstrate that in the limit, our bound recovers the price of anarchy bounds for networks of only human-driven cars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源