论文标题

部分可观测时空混沌系统的无模型预测

Band-type resonance: non-discrete energetically-optimal resonant states

论文作者

Pons, Arion, Beatus, Tsevi

论文摘要

结构共振涉及通过调整的结构弹性吸收惯性载荷:在广泛的生物学和技术系统中起着关键作用的过程,包括许多生物学和生物启发的运动系统。常规线性和非线性谐振状态通常以特定的离散频率和特定的对称波形存在。这种离散性可能是共振控制调制的障碍:通过打破波形对称性或调节驱动频率,与这些状态偏离这些状态,通常会导致系统效率的损失。在这里,我们展示了一种新的策略来实现这些调制,但不会损失能量效率。利用非线性动力学的基本进步,我们表征了一种新的结构共振形式:带型共振,描述了围绕常规离散谐振状态存在的连续的能量 - 最佳共振状态的连续带。这些状态是对偏离线性(或非线性)谐振频率偏差的共同假设的反例,必然涉及效率的丧失。我们证明了如何通过光谱塑形方法生成带型谐振态:对系统运动学和负载波形的修改很小,我们构造了频率调制和对称性的谐振态的集合,这些谐振态表现出与其常规离散类似物相同的能量最佳性。在许多不同的物理环境中,这些非差异共振状态的存在 - 线性和非线性 - 是一种新的动力系统现象。它不仅对生物学和生物启发的运动系统具有影响,而且对跨物理,工程和生物学的强迫振荡器系统组成。

Structural resonance involves the absorption of inertial loads by a tuned structural elasticity: a process playing a key role in a wide range of biological and technological systems, including many biological and bio-inspired locomotion systems. Conventional linear and nonlinear resonant states typically exist at specific discrete frequencies, and specific symmetric waveforms. This discreteness can be an obstacle to resonant control modulation: deviating from these states, by breaking waveform symmetry or modulating drive frequency, generally leads to losses in system efficiency. Here, we demonstrate a new strategy for achieving these modulations at no loss of energetic efficiency. Leveraging fundamental advances in nonlinear dynamics, we characterise a new form of structural resonance: band-type resonance, describing a continuous band of energetically-optimal resonant states existing around conventional discrete resonant states. These states are a counterexample to the common supposition that deviation from a linear (or nonlinear) resonant frequency necessarily involves a loss of efficiency. We demonstrate how band-type resonant states can be generated via a spectral shaping approach: with small modifications to the system kinematic and load waveforms, we construct sets of frequency-modulated and symmetry-broken resonant states that show equal energetic optimality to their conventional discrete analogues. The existence of these non-discrete resonant states in a huge range of oscillators - linear and nonlinear, in many different physical contexts - is a new dynamical-systems phenomenon. It has implications not only for biological and bio-inspired locomotion systems but for a constellation of forced oscillator systems across physics, engineering, and biology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源