论文标题

蜂窝拓扑优化可区分的伏诺伊图

Cellular Topology Optimization on Differentiable Voronoi Diagrams

论文作者

Feng, Fan, Xiong, Shiying, Liu, Ziyue, Xian, Zangyueyang, Zhou, Yuqing, Kobayashi, Hiroki, Kawamoto, Atsushi, Nomura, Tsuyoshi, Zhu, Bo

论文摘要

细胞结构在许多生物系统中表现出其出色的机械性能。设计和优化这些几何复杂的结构的一个关键挑战在于设计有效的几何表示,以表征系统的空间变化的细胞进化,这是由客观敏感性驱动的。常规的离散细胞结构,例如,伏诺曲图的表示依赖于离散的伏诺元细胞和面部,缺乏其可不同的性能,无法促进基于梯度的大规模,基于梯度的拓扑优化。我们根据可以将细胞结构演变为连续场的拓扑优化算法。我们方法的中心部分是一种杂交粒子网格表示,将先前离散的伏洛伊图编码为在欧几里得空间中定义的连续密度场中。基于这种可区分的表示,我们将其进一步扩展到应对各向异性细胞,自由边界和功能分级的细胞结构。我们可区分的Voronoi图可以将有效的蜂窝表示形式集成到最新的拓扑优化管道中,该拓扑优化管道为细胞结构定义了一个新颖的设计空间,可以有效地探索设计选项,这对于以前的方法是不切实际的。我们通过优化具有多达数千种各向异性细胞(包括股骨骨和odonata机翼)的细胞结构来展示方法的功效。

Cellular structures manifest their outstanding mechanical properties in many biological systems. One key challenge for designing and optimizing these geometrically complicated structures lies in devising an effective geometric representation to characterize the system's spatially varying cellular evolution driven by objective sensitivities. A conventional discrete cellular structure, e.g., a Voronoi diagram, whose representation relies on discrete Voronoi cells and faces, lacks its differentiability to facilitate large-scale, gradient-based topology optimizations. We propose a topology optimization algorithm based on a differentiable and generalized Voronoi representation that can evolve the cellular structure as a continuous field. The central piece of our method is a hybrid particle-grid representation to encode the previously discrete Voronoi diagram into a continuous density field defined in a Euclidean space. Based on this differentiable representation, we further extend it to tackle anisotropic cells, free boundaries, and functionally-graded cellular structures. Our differentiable Voronoi diagram enables the integration of an effective cellular representation into the state-of-the-art topology optimization pipelines, which defines a novel design space for cellular structures to explore design options effectively that were impractical for previous approaches. We showcase the efficacy of our approach by optimizing cellular structures with up to thousands of anisotropic cells, including femur bone and Odonata wing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源