论文标题
平行趋势假设下的结构嵌套平均模型
Structural Nested Mean Models Under Parallel Trends Assumptions
论文作者
论文摘要
我们将两种方法联系起来,以估算差异的反复差异差异的反复差异差异(DID;请参见Roth等人(2023年)和Chaisemartin等(2023)(2023)(有关评论)和结构嵌套的平均模型(请参见vansteelandt和Joffe(2014年),请参见Roth等。特别是,我们表明,在没有未观察到的混杂假设下,以前已知在没有参数识别的SNMMs在条件平行的趋势下也被鉴定出来,类似于通常用于证明时间变化的DID方法合理的假设(但更适合时间变化的混淆)。由于SNMMS模型建模了更广泛的因果估计,因此我们的结果允许随时间变化的实践者在类似假设下解决其他类型的实质性问题的方法。 SNMMS可以估算随时间变化的效应异质性,在单个时间点上处理“ BLIP”的持久作用,当治疗反复改变数据的价值,控制的直接效应,依赖于共振历史的动态治疗策略的效果,持续干预措施的影响(可能对连续或多维处理的影响)。我们提供了一种敏感性分析的方法,以违反我们的平行趋势假设。我们进一步解释了如何通过在平行趋势假设下通过最佳制度SNMM估算最佳治疗方案,并假设未观察到的混杂因素没有效果修改。最后,我们通过实际数据应用来说明我们的方法,估计了医疗补助扩张对不保险率的影响,洪水对洪水保险的影响以及温度持续变化对作物产量的影响。
We link and extend two approaches to estimating time-varying treatment effects on repeated continuous outcomes--time-varying Difference in Differences (DiD; see Roth et al. (2023) and Chaisemartin et al. (2023) for reviews) and Structural Nested Mean Models (SNMMs; see Vansteelandt and Joffe (2014) for a review). In particular, we show that SNMMs, previously known to be nonparametrically identified under a no unobserved confounding assumption, are also identified under a conditional parallel trends assumption similar to those typically used to justify time-varying DiD methods (but more amenable to time-varying confounding). Because SNMMs model a broader set of causal estimands, our results allow practitioners of time-varying DiD approaches to address additional types of substantive questions under similar assumptions. SNMMs enable estimation of time-varying effect heterogeneity, lasting effects of a `blip' of treatment at a single time point, effects of sustained interventions (possibly on continuous or multi-dimensional treatments) when treatment repeatedly changes value in the data, controlled direct effects, effects of dynamic treatment strategies that depend on covariate history, and more. We provide a method for sensitivity analysis to violations of our parallel trends assumption. We further explain how to estimate optimal treatment regimes via optimal regime SNMMs under parallel trends assumptions plus an assumption that there is no effect modification by unobserved confounders. Finally, we illustrate our methods with real data applications estimating effects of Medicaid expansion on uninsurance rates, effects of floods on flood insurance take-up, and effects of sustained changes in temperature on crop yields.