论文标题

比例依赖性和带有小波散射光谱的自相似模型

Scale Dependencies and Self-Similar Models with Wavelet Scattering Spectra

论文作者

Morel, Rudy, Rochette, Gaspar, Leonarduzzi, Roberto, Bouchaud, Jean-Philippe, Mallat, Stéphane

论文摘要

我们介绍了小波散射光谱,该光谱提供了具有固定增量的非高斯时间序列模型。复杂的小波变换计算每个尺度的信号变化。跨量表的依赖性是通过跨时间和小波系数及其模量尺度的关节相关性捕获的。该相关矩阵几乎通过第二小波变换几乎对角线,该小波变换定义了散射光谱。我们表明,这种时刻向量表征了多种尺度过程的多种非高斯性质。我们证明,自相似过程具有散射光谱,这些光谱是规模不变的。可以根据单个实现对该属性进行统计测试,并定义一类广泛的自相似过程。我们构建以散射光谱系数调节的最大熵模型,并使用微型典型采样算法生成新的时间序列。显示了高度非高斯财务和动荡时间序列的申请。

We introduce the wavelet scattering spectra which provide non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint correlation across time and scales of wavelet coefficients and their modulus. This correlation matrix is nearly diagonalized by a second wavelet transform, which defines the scattering spectra. We show that this vector of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. We prove that self-similar processes have scattering spectra which are scale invariant. This property can be tested statistically on a single realization and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering spectra coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源