论文标题

用于黑色素瘤分类的多个EFFNET/RESNET架构

Multiple EffNet/ResNet Architectures for Melanoma Classification

论文作者

Xue, Jiaqi, Ma, Chentian, Li, Li, Wen, Xuan

论文摘要

黑色素瘤是最恶性的皮肤肿瘤,通常从正常痣中癌,在早期很难将良性与恶性区分开。因此,许多机器学习方法正在尝试做出辅助预测。但是,这些方法更多地关注可疑肿瘤的图像数据,并着重于提高图像分类的准确性,但忽略了患者级别上下文信息在实际临床诊断中疾病诊断的重要性。为了更多地利用患者信息并提高诊断的准确性,我们提出了一种基于EFFNET和RESNET的新型黑色素瘤分类模型。我们的模型不仅在同一患者中使用图像,而且还考虑患者级的上下文信息以更好地预测癌症。实验结果表明,所提出的模型达到了0.981 ACC。此外,我们注意到该模型的整体ROC值为0.976,比以前的最新方法要好。

Melanoma is the most malignant skin tumor and usually cancerates from normal moles, which is difficult to distinguish benign from malignant in the early stage. Therefore, many machine learning methods are trying to make auxiliary prediction. However, these methods attach more attention to the image data of suspected tumor, and focus on improving the accuracy of image classification, but ignore the significance of patient-level contextual information for disease diagnosis in actual clinical diagnosis. To make more use of patient information and improve the accuracy of diagnosis, we propose a new melanoma classification model based on EffNet and Resnet. Our model not only uses images within the same patient but also consider patient-level contextual information for better cancer prediction. The experimental results demonstrated that the proposed model achieved 0.981 ACC. Furthermore, we note that the overall ROC value of the model is 0.976 which is better than the previous state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源