论文标题

弹性不稳定和湍流中各种粘弹性流量的新方向和观点,没有惯性

New directions and perspectives in elastic instability and turbulence in various viscoelastic flow geometries without inertia

论文作者

Steinberg, V.

论文摘要

我很快描述了具有曲面流线的无粘弹性惯性流动中弹性驱动的不稳定性和弹性湍流的主要结果。然后,我描述了在re << 1和wi >> 1处的弹性湍流和预测弹性波的理论,速度取决于弹性应激,类似于磁性 - 氢动力学中的Alfven波,与所有其他依赖于中等弹性的波动的流体与所有其他流体流相反。由于具有曲线流的粘弹性流的弹性不稳定性的已建立和证明的机制在零曲率下变得无效,因此证明平行的剪切流是线性稳定的,类似于牛顿平行的剪切流。但是,平行剪切流的线性稳定性并不意味着它们的全球稳定性。在这里,我切换到主要主题,即最近无惯性的平行剪切通道流动的聚合物溶液的发展。在这样的流动中,我们发现了弹性驱动的不稳定性,弹性湍流,弹性波和拖动还原为重新素化,这与线性稳定性预测相矛盾。在这方面,我在此类流动,流动阻力,速度和压力波动以及空间和光谱速度的函数中以高弹性数的函数讨论了短期正常与非正态分子分叉。

I shortly describe the main results on elastically driven instabilities and elastic turbulence in viscoelastic inertia-less flows with curved streamlines. Then I describe a theory of elastic turbulence and prediction of elastic waves at Re<<1 and Wi>>1, which speed depends on the elastic stress similarly to the Alfven waves in magneto-hydrodynamics and in in a contrast to all other fluid flows with wave speed depending on medium elasticity. Since the established and testified mechanism of elastic instability of viscoelastic flows with curvilinear streamlines becomes ineffective at zero curvature, so parallel shear flows are proved linearly stable, similar to Newtonian parallel shear flows. However, the linear stability of parallel shear flows does not imply their global stability. Here I switch to the main subject, namely a recent development in inertia-less parallel shear channel flow of polymer solutions. In such flow, we discover an elastically driven instability, elastic turbulence, elastic waves, and drag reduction down to relaminarization that contradicts the linear stability prediction. In this regard, I discuss shortly normal versus non-normal bifurcations in such flows, flow resistance, velocity and pressure fluctuations, and spatial and spectral velocity as a function of Wi at a high elasticity number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源