论文标题
fedder类型标准,用于准$ f $ -splittit
Fedder type criteria for quasi-$F$-splitting
论文作者
论文摘要
Yobuko最近提出了Quasi-F $ Splitting和$ f $ -Split Heights的概念,这些概念概括和量化了Frobenius-Splitting的概念,并证明了$ f $ -split Heights与Artin-Mazur Heights Calabi-Yau的品种相吻合。在本文中,我们证明了完整交叉点的准$ f $ splittings的Fedder型标准,特别是获得了一个简单的公式来计算Calabi-yau Hypersurfaces的Artin-Mazur高度。此外,作为应用程序,我们给出了$ \ mathbb {f} _ {3} $实现所有可能的Artin-Mazur高度的四分之一k3表面的明确示例,我们提供了$ f $ split-split高度的明确计算。纤维纤维。
Yobuko recently introduced the notion of quasi-$F$-splitting and $F$-split heights, which generalize and quantify the notion of Frobenius-splitting, and proved that $F$-split heights coincide with Artin-Mazur heights for Calabi-Yau varieties. In this paper, we prove Fedder type criteria of quasi-$F$-splittings of complete intersections, and in particular obtain an easy formula to compute Artin-Mazur heights of Calabi-Yau hypersurfaces. Moreover, as applications, we give explicit examples of quartic K3 surfaces over $\mathbb{F}_{3}$ realizing all the possible Artin-Mazur heights, we provide explicit computations of $F$-split heights for all the rational double points and bielliptic surfaces, and introduce interesting phenomena concerned with inversion of adjunction, fiber products, Fano varieties, and general fibers of fibrations.