论文标题

fedder类型标准,用于准$ f $ -splittit

Fedder type criteria for quasi-$F$-splitting

论文作者

Kawakami, Tatsuro, Takamatsu, Teppei, Yoshikawa, Shou

论文摘要

Yobuko最近提出了Quasi-F $ Splitting和$ f $ -Split Heights的概念,这些概念概括和量化了Frobenius-Splitting的概念,并证明了$ f $ -split Heights与Artin-Mazur Heights Calabi-Yau的品种相吻合。在本文中,我们证明了完整交叉点的准$ f $ splittings的Fedder型标准,特别是获得了一个简单的公式来计算Calabi-yau Hypersurfaces的Artin-Mazur高度。此外,作为应用程序,我们给出了$ \ mathbb {f} _ {3} $实现所有可能的Artin-Mazur高度的四分之一k3表面的明确示例,我们提供了$ f $ split-split高度的明确计算。纤维纤维。

Yobuko recently introduced the notion of quasi-$F$-splitting and $F$-split heights, which generalize and quantify the notion of Frobenius-splitting, and proved that $F$-split heights coincide with Artin-Mazur heights for Calabi-Yau varieties. In this paper, we prove Fedder type criteria of quasi-$F$-splittings of complete intersections, and in particular obtain an easy formula to compute Artin-Mazur heights of Calabi-Yau hypersurfaces. Moreover, as applications, we give explicit examples of quartic K3 surfaces over $\mathbb{F}_{3}$ realizing all the possible Artin-Mazur heights, we provide explicit computations of $F$-split heights for all the rational double points and bielliptic surfaces, and introduce interesting phenomena concerned with inversion of adjunction, fiber products, Fano varieties, and general fibers of fibrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源