论文标题
Hajłasz-Besov空间的非环境条件和Sobolev嵌入
Non-collapsing condition and Sobolev embeddings for Hajłasz-Besov spaces
论文作者
论文摘要
在本文中,我们将集中于理解sobolev嵌入为hajłasz-besov的定理之间的关系,该定理在双倍度量尺寸空间$(ω,d,μ)$与措施的非碰撞条件(即\ [\ [\ [\ inf_ inf_ {x \ incem(x)b(x,x,x,x,1)> 0> 0。 \]我们还将获得Hajłasz-Besov空间的嵌入结果,其平滑度的模量是由重排的不变型准核电产生的。
In this paper we will focus on understanding the relation between Sobolev embedding theorems for Hajłasz-Besov spaces defined on a doubling metric measure space $(Ω,d,μ)$ and the non-collapsing condition of the measure, i.e. \[ \inf_{x\inΩ}μ(B(x,1))>0. \] We will also obtain embedding results for Hajłasz-Besov spaces whose modulus of smoothness is generated by a rearrangement invariant quasi-norm.