论文标题
$ P $ emlements几乎没有共轭类别的小组
Profinite groups with few conjugacy classes of $p$-elements
论文作者
论文摘要
事实证明,一个profinite $ g $的$ 2^{\ aleph_0} $ conjugacy类的$ p $ emlements的$ p $ emlements for Odd Prime $ p $时,并且仅当其$ p $ -sylow子组是有限的。 (在这里,按$ p $ - 元素,一个人理解一个元素,该元素具有$ p $ - 权力订单或拓扑上生成组同构为$ {\ mathbb z} _p $。)证明$ p = 2 $的较弱结果被证明是一个较弱的结果。
It is proved that a profinite group $G$ has fewer than $2^{\aleph_0}$ conjugacy classes of $p$-elements for an odd prime $p$ if and only if its $p$-Sylow subgroups are finite. (Here, by a $p$-element one understands an element that either has $p$-power order or topologically generates a group isomorphic to ${\mathbb Z}_p$.) A weaker result is proved for $p=2$.