论文标题

有效的端到端深神经网络,用于间质肺部疾病识别和分类

An Efficient End-to-End Deep Neural Network for Interstitial Lung Disease Recognition and Classification

论文作者

Junayed, Masum Shah, Jeny, Afsana Ahsan, Islam, Md Baharul, Ahmed, Ikhtiar, Shah, A F M Shahen

论文摘要

自动化的间质肺疾病(ILDS)分类技术对于在诊断过程中协助临床医生至关重要。检测和分类ILDS模式是一个具有挑战性的问题。本文介绍了端到端深度卷积神经网络(CNN),用于对ILDS模式进行分类。所提出的模型包括四个具有不同内核大小的卷积层和整流的线性单元(relu)激活函数,然后进行批处理归一化和最大量,其尺寸等于最终特征映射大小均与四个密集的层相等。我们使用亚当优化器来最大程度地减少分类跨熵。由21328个图像贴片组成的128个CT扫描图像贴片和五个类别的数据集用于训练和评估所提出的模型。比较研究表明,所提出的模型在同一数据集上优于预先训练的CNN和五倍的交叉验证。对于ILDS模式分类,所提出的方法的准确度得分为99.09%,平均F得分为97.9%,表现优于三个预先训练的CNN。这些结果表明,所提出的模型在精确,召回,F得分和准确性方面相对最新。

The automated Interstitial Lung Diseases (ILDs) classification technique is essential for assisting clinicians during the diagnosis process. Detecting and classifying ILDs patterns is a challenging problem. This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns. The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function, followed by batch normalization and max-pooling with a size equal to the final feature map size well as four dense layers. We used the ADAM optimizer to minimize categorical cross-entropy. A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model. A comparison study showed that the presented model outperformed pre-trained CNNs and five-fold cross-validation on the same dataset. For ILDs pattern classification, the proposed approach achieved the accuracy scores of 99.09% and the average F score of 97.9%, outperforming three pre-trained CNNs. These outcomes show that the proposed model is relatively state-of-the-art in precision, recall, f score, and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源