论文标题
冠状质量弹出的进化和后果
Evolution and Consequences of Coronal Mass Ejections in the Heliosphere
论文作者
论文摘要
研究冠状质量驱散(CME)的地球演化和后果对于理解太阳事物关系至关重要。 Heliosperic Imaster(HIS)在板载立体声中首次提供了Heliosphere中CME的多种视图,观察到了太阳与地球之间的巨大而关键的观察差距。使用冠状动脉(CORS)构建的J-MAP及其观察结果,我们不断跟踪CMES的不同密度增强功能。我们实施了几种重建方法,以估计CMES在从太阳到地球演化过程中的三维(3D)运动学。我们的研究提供了证据表明,太阳附近的CME的3D速度不足以理解大多数CME的地球到达时间的传播和准确预测。这一发现可能是由于许多因素会显着将CME运动学的变化超出COR视野,例如两个或多个CME的相互作用/碰撞或CME与环境太阳风介质的相互作用。我们尝试使用立体声/HI,风和ACE观测来理解Heliosphere中相互作用/碰撞CME的演变和后果。该研究发现CME碰撞和相互作用后CME的动力学发生了重大变化。原位观察结果表明,CME-CME相互作用的特征是加热和压缩,磁孔的形成(MHS)和相互作用区域(IR)。我们还注意到,在CME前后边缘形成的持久IR负责大型地磁扰动。我们的研究强调了使用他的观察结果在研究CME,CME-CME碰撞,识别和关联CME在遥远和原位观察结果中的三部分结构的地球层演变中的重要性,从而改善了空间天气预测。
Investigating the heliospheric evolution and consequences of Coronal mass ejections (CMEs) is critical to understanding the solar-terrestrial relationship. For the first time, Heliospheric Imagers (HIs) onboard STEREO, providing multiple views of CMEs in the heliosphere, observed the vast and crucial observational gap between the Sun and the Earth. Using J-maps constructed from coronagraphs (CORs) and HIs observations, we continuously tracked different density enhanced features of CMEs. We implemented several reconstruction methods to estimate the three-dimensional (3D) kinematics of CMEs during their evolution from the Sun to Earth. Our study provides evidence that the 3D speeds of CMEs near the Sun are not reasonably sufficient for understanding the propagation and accurate forecasting of the arrival time at the Earth of a majority of CMEs. This finding can be due to many factors that significantly change the CME kinematics beyond the COR field of view, such as the interaction/collision of two or more CMEs or the interaction of CMEs with the ambient solar wind medium. We attempted to understand the evolution and consequences of the interacting/colliding CMEs in the heliosphere using STEREO/HI, WIND, and ACE observations. The study found a significant change in the dynamics of the CMEs after their collision and interaction. The in situ observations show the signatures of CME-CME interaction as heating and compression, formation of magnetic holes (MHs), and interaction region (IR). We also noticed that long-lasting IR, formed at the rear edge of preceding CME, is responsible for large geomagnetic perturbations. Our study highlights the significance of using HIs observations in studying heliospheric evolution of CMEs, CME-CME collision, identifying and associating the three-part structure of CMEs in their remote and in situ observations, and hence for improved space weather forecasting.