论文标题

自我监督学习以指导火星地形图像科学相关的分类

Self-Supervised Learning to Guide Scientifically Relevant Categorization of Martian Terrain Images

论文作者

Panambur, Tejas, Chakraborty, Deep, Meyer, Melissa, Milliken, Ralph, Learned-Miller, Erik, Parente, Mario

论文摘要

火星流动站图像中的自动地形识别不仅是导航的重要问题,而且对于有兴趣研究岩石类型的科学家,以及扩展的古代火星古气候和可居住性的条件。现有的标记火星地形的方法要么涉及使用非专家注释者产生有限粒度的分类法(例如土壤,沙子,沙子,基岩,浮子岩石等),要么依靠倾向于产生诸如rover零件和景观等知觉类别的通用类别发现方法,这些方法是对地球学分析不合时宜的。包含粒状地质/地貌地形类别的专家标记的数据集是罕见或对公众无法访问的,有时需要从复杂的注释中提取相关的分类信息。为了促进具有详细地形类别的数据集创建数据集,我们提出了一种自我监视的方法,可以将沉积物纹理聚集在好奇心漫游者(Mars Science Laboratory)上从桅杆摄像机捕获的图像中。然后,我们对这些集群进行了定性分析,并通过创建一组颗粒状地形类别来描述它们的地质意义。这些自动发现的集群的精确和地质验证表明,我们的方法有望快速分类重要的地质特征,因此将促进我们为MARS地形识别的大型,颗粒状且公开可用的数据集的长期目标。

Automatic terrain recognition in Mars rover images is an important problem not just for navigation, but for scientists interested in studying rock types, and by extension, conditions of the ancient Martian paleoclimate and habitability. Existing approaches to label Martian terrain either involve the use of non-expert annotators producing taxonomies of limited granularity (e.g. soil, sand, bedrock, float rock, etc.), or rely on generic class discovery approaches that tend to produce perceptual classes such as rover parts and landscape, which are irrelevant to geologic analysis. Expert-labeled datasets containing granular geological/geomorphological terrain categories are rare or inaccessible to public, and sometimes require the extraction of relevant categorical information from complex annotations. In order to facilitate the creation of a dataset with detailed terrain categories, we present a self-supervised method that can cluster sedimentary textures in images captured from the Mast camera onboard the Curiosity rover (Mars Science Laboratory). We then present a qualitative analysis of these clusters and describe their geologic significance via the creation of a set of granular terrain categories. The precision and geologic validation of these automatically discovered clusters suggest that our methods are promising for the rapid classification of important geologic features and will therefore facilitate our long-term goal of producing a large, granular, and publicly available dataset for Mars terrain recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源