论文标题

通过CUNX介导的轨道电流调整神经形态切换

Tailoring neuromorphic switching by CuNx-mediated orbital currents

论文作者

Chen, Tian-Yue, Hsiao, Yu-Chan, Liao, Wei-Bang, Pai, Chi-Feng

论文摘要

电流诱导的自旋轨道扭矩(SOT)被认为是在自旋轨道设备中驱动神经形态行为的有前途的机制。原则上,重金属磁异质结构中的强SOT归因于自旋轨道耦合(SOC)诱导的自旋霍尔效应(SHE)和/或自旋Rashba-Edelstein效应(SREE)。最近,已经提出了诸如轨道角动量(OAM)诱导的轨道霍尔效应(OHE)和/或轨道Rashba-Edelstein效应(OREE)之类的无SOC机制,以产生与常规旋转霍尔机制相当的相当大的扭矩。在这项工作中,我们表明轨道电流可以由硝基浅金属CU有效地产生。通过调节氮掺杂浓度,可以在PT/CO/CUNX磁性异质结构中调整为由自旋和轨道电流贡献组成的总体阻尼状SOT效率。电流诱导的磁化切换进一步验证了这种轨道电流的功效,其临界开关电流密度低至JC〜5 x 10^10 a/m2。最重要的是,可以在此类异质结构中观察到轨道 - 电流介导的回忆性切换行为,这表明巨大的SOT和有效的磁化化切换是适用的磁性切换窗口的权衡。我们的工作为轨道电流的作用提供了见解,可能在SOT神经形态设备中发挥作用,并铺平了制造节能旋转轨道设备的新途径。

Current-induced spin-orbit torque (SOT) is regarded as a promising mechanism for driving neuromorphic behavior in spin-orbitronic devices. In principle, the strong SOT in heavy metal-based magnetic heterostructure is attributed to the spin-orbit coupling (SOC)-induced spin Hall effect (SHE) and/or the spin Rashba-Edelstein effect (SREE). Recently, SOC-free mechanisms such as the orbital angular momentum (OAM)-induced orbital Hall effect (OHE) and/or the orbital Rashba-Edelstein effect (OREE) have been proposed to generate sizable torques comparable to those from the conventional spin Hall mechanism. In this work, we show that the orbital current can be effectively generated by the nitrided light metal Cu. The overall damping-like SOT efficiency, which consists of both the spin and the orbital current contributions, can be tailored from ~ 0.06 to 0.4 in a Pt/Co/CuNx magnetic heterostructure by tuning the nitrogen doping concentration. Current-induced magnetization switching further verifies the efficacy of such orbital current with a critical switching current density as low as Jc ~ 5 x 10^10 A/m2. Most importantly, the orbital-current-mediated memristive switching behavior can be observed in such heterostructures, which reveals that the gigantic SOT and efficient magnetization switching are the tradeoffs for the applicable window of memristive switching. Our work provides insights into the role of orbital current might play in SOT neuromorphic devices and paves a new route for making energy-efficient spin-orbitronic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源