论文标题
用于改善纹理分类的多尺度分析
Multiscale Analysis for Improving Texture Classification
论文作者
论文摘要
来自图像的信息发生在多个和不同的空间尺度上。图像金字塔多解析表示是用于图像分析和操纵空间尺度的有用数据结构。本文采用高斯 - 拉普拉斯金字塔分别处理纹理的不同空间频带。首先,我们生成三个图像,对应于三个级别的高斯拉普拉斯金字塔,以获取输入图像以捕获固有的细节。然后,我们使用以生物为灵感的纹理描述符,信息理论措施,灰度级别的共发生矩阵功能以及Haralick的统计特征来汇总从灰色和颜色纹理图像中提取的特征。这样的聚合旨在产生最大程度地表征纹理的功能,这与单独使用每个描述符不同,这可能会失去一些相关的纹理信息并降低分类性能。与最新方法相比,有关纹理和组织病理图像数据集的实验结果表明了该方法的优势。这些发现强调了多尺度图像分析的重要性,并证实了上述描述符是互补的。
Information from an image occurs over multiple and distinct spatial scales. Image pyramid multiresolution representations are a useful data structure for image analysis and manipulation over a spectrum of spatial scales. This paper employs the Gaussian-Laplacian pyramid to treat different spatial frequency bands of a texture separately. First, we generate three images corresponding to three levels of the Gaussian-Laplacian pyramid for an input image to capture intrinsic details. Then we aggregate features extracted from gray and color texture images using bio-inspired texture descriptors, information-theoretic measures, gray-level co-occurrence matrix features, and Haralick statistical features into a single feature vector. Such an aggregation aims at producing features that characterize textures to their maximum extent, unlike employing each descriptor separately, which may lose some relevant textural information and reduce the classification performance. The experimental results on texture and histopathologic image datasets have shown the advantages of the proposed method compared to state-of-the-art approaches. Such findings emphasize the importance of multiscale image analysis and corroborate that the descriptors mentioned above are complementary.