论文标题
Block Hunter:基于区块链的IIT网络中的网络威胁狩猎的联合学习
Block Hunter: Federated Learning for Cyber Threat Hunting in Blockchain-based IIoT Networks
论文作者
论文摘要
如今,正在开发基于区块链的技术,以改善数据安全性。在工业互联网(IIOT)的背景下,基于链条的网络是区块链技术最著名的应用之一。 IIOT设备在我们的数字世界中变得越来越普遍,尤其是为了支持开发智能工厂。尽管区块链是一种强大的工具,但它容易受到网络攻击的影响。在智能工厂中检测基于区块链的IIT网络中的异常情况对于保护网络和系统免受意外攻击至关重要。在本文中,我们使用联邦学习(FL)来建立一个称为Block Hunter的威胁狩猎框架,以自动寻找基于区块链的IIT网络中的攻击。 Block Hunter利用基于群集的架构进行异常检测,并在联合环境中使用了几种机器学习模型。据我们所知,Block Hunter是IIOT网络中第一个联邦威胁狩猎模型,该模型在保留隐私的同时识别出异常行为。我们的结果证明了块猎人在检测具有高精度和最小必需带宽的异常活动中的效率。
Nowadays, blockchain-based technologies are being developed in various industries to improve data security. In the context of the Industrial Internet of Things (IIoT), a chain-based network is one of the most notable applications of blockchain technology. IIoT devices have become increasingly prevalent in our digital world, especially in support of developing smart factories. Although blockchain is a powerful tool, it is vulnerable to cyber attacks. Detecting anomalies in blockchain-based IIoT networks in smart factories is crucial in protecting networks and systems from unexpected attacks. In this paper, we use Federated Learning (FL) to build a threat hunting framework called Block Hunter to automatically hunt for attacks in blockchain-based IIoT networks. Block Hunter utilizes a cluster-based architecture for anomaly detection combined with several machine learning models in a federated environment. To the best of our knowledge, Block Hunter is the first federated threat hunting model in IIoT networks that identifies anomalous behavior while preserving privacy. Our results prove the efficiency of the Block Hunter in detecting anomalous activities with high accuracy and minimum required bandwidth.