论文标题

尖头固有扁平收敛下能力的半接管性

Semicontinuity of capacity under pointed intrinsic flat convergence

论文作者

Jauregui, Jeffrey L., Perales, Raquel, Portegies, Jacobus W.

论文摘要

$ \ Mathbb r^n $设置的紧凑型能力的概念很容易概括为无2型riemannian歧管,并且使用了更多的实质性工作,即公制空间(其中可能有多个自然的能力定义)。由分析和几何考虑,尤其是Jauregui对容量体积质量和Jauregui和Lee的定义,以及李对ADM质量较低的半持续点的结果和Huisken的等值质量质量,我们调查能力在背景空间变化时的容量功能如何表现。具体而言,我们允许背景空间由一系列局部积分的局部积分电流空间组成,这些局部空间会收敛于尖的sormani - wenger固有的平坦感。对于批量保留($ \ MATHCAL {VF} $)收敛的情况,我们证明了两个定理,这些定理证明了能力的上半强度现象:一个版本是针对以收敛点为中心的固定半径的球;另一种是Lipschitz巨型套件。我们的方法是由Portegies对$ \ Mathcal {Vf} $ Convergence下特征值的半持续性的调查所激发的。我们包括表明半决性可能严格的示例,并且必须假设量。最后,讨论了如何使用我们的能力和结果来理解非平滑环境中一般相对论的总质量。

The concept of the capacity of a compact set in $\mathbb R^n$ generalizes readily to noncompact Riemannian manifolds and, with more substantial work, to metric spaces (where multiple natural definitions of capacity are possible). Motivated by analytic and geometric considerations, and in particular Jauregui's definition of capacity-volume mass and Jauregui and Lee's results on the lower semicontinuity of the ADM mass and Huisken's isoperimetric mass, we investigate how the capacity functional behaves when the background spaces vary. Specifically, we allow the background spaces to consist of a sequence of local integral current spaces converging in the pointed Sormani--Wenger intrinsic flat sense. For the case of volume-preserving ($\mathcal{VF}$) convergence, we prove two theorems that demonstrate an upper semicontinuity phenomenon for the capacity: one version is for balls of a fixed radius centered about converging points; the other is for Lipschitz sublevel sets. Our approach is motivated by Portegies' investigation of the semicontinuity of eigenvalues under $\mathcal{VF}$ convergence. We include examples to show the semicontinuity may be strict, and that the volume-preserving hypothesis is necessary. Finally, there is a discussion on how capacity and our results may be used towards understanding the general relativistic total mass in non-smooth settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源