论文标题
partons作为量子厅父母汉密尔顿人的独特基态:斐波那契案
Partons as unique ground states of quantum Hall parent Hamiltonians: The case of Fibonacci anyons
论文作者
论文摘要
我们提出了微观,多个兰道水平,(无挫败感和积极的半明确)父母汉密尔顿人的基础,他们的基础陈述具有不同的量子大厅流体,类似于Parton,其激发表现出Abelian或非阿贝尔辫子统计。我们证明了在多个Landau级别具有不同颗粒数的系统的基态能量定理,在多态几何形状的情况下证明了S偶性,并建立了特殊的汉密尔顿特殊模式的完整零模式,使Parton样状态稳定。在物理中引入的紧急纠缠的保利原则(EPP)。 Rev. B 98,161118(R)(2018),并定义了量子厅流体的``DNA'',是对流体拓扑特征的确切确定的背后,包括激发的电荷和辫子统计数据,以及有效的边缘理论描述。当满足闭合壳条件时,最密度(即最高密度和最低的总角动量)零能量模式是独特的parton状态。我们猜想,类似Parton的状态通常跨越多体波函数的子空间,并在任何给定数量的Landau级别内具有两体$ m $ $ m $ clustering属性。一般的论点是对$ m = 3 $ fermions case of四个兰道水平的严格考虑的补充。对于这种情况,我们确定可以通过列举与基础EPP一致的某些模式来完成零模式计数。我们采用连贯的状态方法来表明基础(本地化)散装激发是斐波那契。这表明与分数量子厅状态相关的DNA编码所有通用特性。具体而言,对于类似帕顿的状态,我们与有限债券维度的张量网络结构建立了一个链接,该结构通过根级纠缠而出现。
We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) parent Hamiltonians whose ground states, realizing different quantum Hall fluids, are parton-like and whose excitations display either Abelian or non-Abelian braiding statistics. We prove ground state energy monotonicity theorems for systems with different particle numbers in multiple Landau levels, demonstrate S-duality in the case of toroidal geometry, and establish complete sets of zero modes of special Hamiltonians stabilizing parton-like states. The emergent Entangled Pauli Principle (EPP), introduced in Phys. Rev. B 98, 161118(R) (2018) and which defines the ``DNA'' of the quantum Hall fluid, is behind the exact determination of the topological characteristics of the fluid, including charge and braiding statistics of excitations, and effective edge theory descriptions. When the closed-shell condition is satisfied, the densest (i.e., the highest density and lowest total angular momentum) zero-energy mode is a unique parton state. We conjecture that parton-like states generally span the subspace of many-body wave functions with the two-body $M$-clustering property within any given number of Landau levels. General arguments are supplemented by rigorous considerations for the $M=3$ case of fermions in four Landau levels. For this case, we establish that the zero mode counting can be done by enumerating certain patterns consistent with an underlying EPP. We apply the coherent state approach to show that the elementary (localized) bulk excitations are Fibonacci anyons. This demonstrates that the DNA associated with fractional quantum Hall states encodes all universal properties. Specifically, for parton-like states, we establish a link with tensor network structures of finite bond dimension that emerge via root level entanglement.