论文标题
BSAL:链接预测的双组分结构和属性学习框架
BSAL: A Framework of Bi-component Structure and Attribute Learning for Link Prediction
论文作者
论文摘要
考虑到图形结构化数据的普遍存在,学习从节点分类的下游任务的节点的表示形式,链接预测到图形分类至关重要。关于不同网络的链接推断,我们重新访问链接预测技术,并确定结构和属性信息的重要性。但是,可用的技术要么大量依靠网络拓扑,这在实践中是虚假的,要么无法整合图形拓扑并正确地集成图形。为了弥合差距,我们提出了一个双色结构和属性学习框架(BSAL),该结构和属性学习框架(BSAL)旨在适应拓扑和特征空间中的信息。具体而言,BSAL通过节点属性构建语义拓扑,然后获取有关语义视图的嵌入,该嵌入式提供了灵活且易于实现的解决方案,以使节点属性携带的信息自适应地合并。然后,使用注意机制将语义嵌入与拓扑嵌入在一起的嵌入一起融合在一起,以进行最终预测。广泛的实验表明,我们的提案表现出色,并且在各种研究基准方面的表现明显优于基准。
Given the ubiquitous existence of graph-structured data, learning the representations of nodes for the downstream tasks ranging from node classification, link prediction to graph classification is of crucial importance. Regarding missing link inference of diverse networks, we revisit the link prediction techniques and identify the importance of both the structural and attribute information. However, the available techniques either heavily count on the network topology which is spurious in practice or cannot integrate graph topology and features properly. To bridge the gap, we propose a bicomponent structural and attribute learning framework (BSAL) that is designed to adaptively leverage information from topology and feature spaces. Specifically, BSAL constructs a semantic topology via the node attributes and then gets the embeddings regarding the semantic view, which provides a flexible and easy-to-implement solution to adaptively incorporate the information carried by the node attributes. Then the semantic embedding together with topology embedding is fused together using an attention mechanism for the final prediction. Extensive experiments show the superior performance of our proposal and it significantly outperforms baselines on diverse research benchmarks.