论文标题

pp-matting:高准确性自然图像垫子

PP-Matting: High-Accuracy Natural Image Matting

论文作者

Chen, Guowei, Liu, Yi, Wang, Jian, Peng, Juncai, Hao, Yuying, Chu, Lutao, Tang, Shiyu, Wu, Zewu, Chen, Zeyu, Yu, Zhiliang, Du, Yuning, Dang, Qingqing, Hu, Xiaoguang, Yu, Dianhai

论文摘要

自然图像垫子是一项基本挑战性的计算机视觉任务。它在图像编辑和组成中具有许多应用。最近,基于深度学习的方法在图像垫子方面取得了巨大的改进。但是,他们中的大多数都需要用户提供的内饰作为辅助输入,从而限制了现实世界中的垫子应用程序。尽管已经提出了一些不含Trimap的方法,但与基于Trimap的质量相比,底漆质量仍然不令人满意。没有Trimap指导,Matting模型很容易遭受前景背景的歧义,并且还会在过渡区域产生模糊的细节。在这项工作中,我们提出了PP-Matting,这是一种可以实现高精度自然图像垫的无构层架构。我们的方法应用了一个高分辨率细节分支(HRDB),该分支提取前景的细颗粒细节,以保持特征分辨率不变。此外,我们提出了一个采用语义分割子任务的语义上下文分支(SCB)。它可以防止因缺少语义上下文引起的局部歧义的细节预测。此外,我们对两个众所周知的基准进行了广泛的实验:组成-1K和Intretions-646。结果证明了PP培训比以前的方法的优越性。此外,我们对人类垫子的方法进行了定性评估,该评估显示了其在实际应用中的出色表现。代码和预培训模型将在Paddleseg:https://github.com/paddlepaddle/paddleseg上找到。

Natural image matting is a fundamental and challenging computer vision task. It has many applications in image editing and composition. Recently, deep learning-based approaches have achieved great improvements in image matting. However, most of them require a user-supplied trimap as an auxiliary input, which limits the matting applications in the real world. Although some trimap-free approaches have been proposed, the matting quality is still unsatisfactory compared to trimap-based ones. Without the trimap guidance, the matting models suffer from foreground-background ambiguity easily, and also generate blurry details in the transition area. In this work, we propose PP-Matting, a trimap-free architecture that can achieve high-accuracy natural image matting. Our method applies a high-resolution detail branch (HRDB) that extracts fine-grained details of the foreground with keeping feature resolution unchanged. Also, we propose a semantic context branch (SCB) that adopts a semantic segmentation subtask. It prevents the detail prediction from local ambiguity caused by semantic context missing. In addition, we conduct extensive experiments on two well-known benchmarks: Composition-1k and Distinctions-646. The results demonstrate the superiority of PP-Matting over previous methods. Furthermore, we provide a qualitative evaluation of our method on human matting which shows its outstanding performance in the practical application. The code and pre-trained models will be available at PaddleSeg: https://github.com/PaddlePaddle/PaddleSeg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源