论文标题
pp-matting:高准确性自然图像垫子
PP-Matting: High-Accuracy Natural Image Matting
论文作者
论文摘要
自然图像垫子是一项基本挑战性的计算机视觉任务。它在图像编辑和组成中具有许多应用。最近,基于深度学习的方法在图像垫子方面取得了巨大的改进。但是,他们中的大多数都需要用户提供的内饰作为辅助输入,从而限制了现实世界中的垫子应用程序。尽管已经提出了一些不含Trimap的方法,但与基于Trimap的质量相比,底漆质量仍然不令人满意。没有Trimap指导,Matting模型很容易遭受前景背景的歧义,并且还会在过渡区域产生模糊的细节。在这项工作中,我们提出了PP-Matting,这是一种可以实现高精度自然图像垫的无构层架构。我们的方法应用了一个高分辨率细节分支(HRDB),该分支提取前景的细颗粒细节,以保持特征分辨率不变。此外,我们提出了一个采用语义分割子任务的语义上下文分支(SCB)。它可以防止因缺少语义上下文引起的局部歧义的细节预测。此外,我们对两个众所周知的基准进行了广泛的实验:组成-1K和Intretions-646。结果证明了PP培训比以前的方法的优越性。此外,我们对人类垫子的方法进行了定性评估,该评估显示了其在实际应用中的出色表现。代码和预培训模型将在Paddleseg:https://github.com/paddlepaddle/paddleseg上找到。
Natural image matting is a fundamental and challenging computer vision task. It has many applications in image editing and composition. Recently, deep learning-based approaches have achieved great improvements in image matting. However, most of them require a user-supplied trimap as an auxiliary input, which limits the matting applications in the real world. Although some trimap-free approaches have been proposed, the matting quality is still unsatisfactory compared to trimap-based ones. Without the trimap guidance, the matting models suffer from foreground-background ambiguity easily, and also generate blurry details in the transition area. In this work, we propose PP-Matting, a trimap-free architecture that can achieve high-accuracy natural image matting. Our method applies a high-resolution detail branch (HRDB) that extracts fine-grained details of the foreground with keeping feature resolution unchanged. Also, we propose a semantic context branch (SCB) that adopts a semantic segmentation subtask. It prevents the detail prediction from local ambiguity caused by semantic context missing. In addition, we conduct extensive experiments on two well-known benchmarks: Composition-1k and Distinctions-646. The results demonstrate the superiority of PP-Matting over previous methods. Furthermore, we provide a qualitative evaluation of our method on human matting which shows its outstanding performance in the practical application. The code and pre-trained models will be available at PaddleSeg: https://github.com/PaddlePaddle/PaddleSeg.