论文标题
通过非义立方形式代表广场
Representation of Squares by Nonsingular Cubic Forms
论文作者
论文摘要
我们证明了一个渐近公式,用于通过六个或更多变量中的非单一立方体形式的平方表示数量。证明的主要成分是希思棕色的圆形方法的形式和各种指数总和结果。指数总和结果的深度与Hooley在九个变量中的立方形式的工作相当,特别是我们证明了Katz的绑定类似物。
We prove an asymptotic formula for the number of representations of squares by nonsingular cubic forms in six or more variables. The main ingredients of the proof are Heath-Brown's form of the Circle Method and various exponential sum results. The depth of the exponential sum results is comparable to Hooley's work on cubic forms in nine variables, in particular we prove an analogue of Katz' bound.