论文标题

您是您写的:在大语言模型时代保存隐私

You Are What You Write: Preserving Privacy in the Era of Large Language Models

论文作者

Plant, Richard, Giuffrida, Valerio, Gkatzia, Dimitra

论文摘要

大规模采用大型语言模型已引入了一个新的时代,以实现一系列自然语言处理任务的便捷知识转移。但是,这些模型还通过暴露有关数据主体的不必要信息来破坏用户信任的风险,这些信息可能由恶意方提取,例如通过对抗攻击。我们介绍了通过一系列流行模型编码为预训练表示的个人信息的程度的实证研究,我们在模型的复杂性,预训练中使用的数据量和数据泄漏之间显示了正相关。在本文中,我们介绍了一些最受欢迎的隐私算法的首次覆盖范围评估和比较,该算法是在带有人口统计信息(位置,年龄和性别)的大型多语言数据集上进行的。结果表明,由于较大且更复杂的模型更容易泄漏私人信息,因此非常需要使用隐私保护方法。我们还发现,诸如差异隐私(DP)之类的高度隐私技术可以具有严重的模型效果,可以使用混合或公制DP技术来改善这些效果。

Large scale adoption of large language models has introduced a new era of convenient knowledge transfer for a slew of natural language processing tasks. However, these models also run the risk of undermining user trust by exposing unwanted information about the data subjects, which may be extracted by a malicious party, e.g. through adversarial attacks. We present an empirical investigation into the extent of the personal information encoded into pre-trained representations by a range of popular models, and we show a positive correlation between the complexity of a model, the amount of data used in pre-training, and data leakage. In this paper, we present the first wide coverage evaluation and comparison of some of the most popular privacy-preserving algorithms, on a large, multi-lingual dataset on sentiment analysis annotated with demographic information (location, age and gender). The results show since larger and more complex models are more prone to leaking private information, use of privacy-preserving methods is highly desirable. We also find that highly privacy-preserving technologies like differential privacy (DP) can have serious model utility effects, which can be ameliorated using hybrid or metric-DP techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源