论文标题

部分可观测时空混沌系统的无模型预测

Lightweight HI source finding for next generation radio surveys

论文作者

Tolley, Emma, Korber, Damien, Galan, Aymeric, Peel, Austin, Sargent, Mark T., Kneib, Jean-Paul, Courbin, Frederic, Starck, Jean-Luc

论文摘要

未来的深度HI调查对于理解星系的性质和宇宙内容至关重要。但是,这些数据大量将需要分布式和自动化处理技术。我们介绍了Lisa,这是一组Python模块,用于在3D光谱数据中对HI源进行降解,检测和表征。丽莎是在平方公里阵列科学数据挑战2数据集上开发和测试的,并包含用于易于域分解和并行执行的模块和管道。 LISA包含使用星形转换和柔性源发现的2D-1D小波降解算法。这些算法是轻巧且便携的,只需要几个用户定义的参数来反映数据的分辨率。丽莎还包括两个开发的卷积神经网络,以分析将HI源与人工制品区分开并预测HI源属性的数据立方体。所有这些组件都被设计为尽可能模块化,使用户可以混合和匹配不同的组件以创建理想的管道。我们演示了LISA在SDC2数据集上的不同组件的性能,该数据集能够找到95%的HI源的SNR> 3并准确预测其属性。

Future deep HI surveys will be essential for understanding the nature of galaxies and the content of the Universe. However, the large volume of these data will require distributed and automated processing techniques. We introduce LiSA, a set of python modules for the denoising, detection and characterization of HI sources in 3D spectral data. LiSA was developed and tested on the Square Kilometer Array Science Data Challenge 2 dataset, and contains modules and pipelines for easy domain decomposition and parallel execution. LiSA contains algorithms for 2D-1D wavelet denoising using the starlet transform and flexible source finding using null-hypothesis testing. These algorithms are lightweight and portable, needing only a few user-defined parameters reflecting the resolution of the data. LiSA also includes two convolutional neural networks developed to analyse data cubes which separate HI sources from artifacts and predict the HI source properties. All of these components are designed to be as modular as possible, allowing users to mix and match different components to create their ideal pipeline. We demonstrate the performance of the different components of LiSA on the SDC2 dataset, which is able to find 95% of HI sources with SNR > 3 and accurately predict their properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源