论文标题

在组图中强烈的Quasiconvex亚组

Strongly Quasiconvex subgroups in graphs of groups

论文作者

Nguyen, Hoang Thanh, Tran, Hung Cong

论文摘要

给定$ \ Mathcal {g} =(γ,\ {g_v \},\ {g_e \})$的$ \ nathcal {g} =(γ,\ {g_v \})$,具有某些条件上的有顶点组,$ g $在其贝斯 - 塞雷树$ t $上均在其贝斯 - serre $ t上。令$ h $为有限生成的$ g $的子组。我们证明了以下声明等价:$ h $具有有限的高度,$(g,t,h)$是$ a/qi $ - 三重,$ h $是Quasiconvex的,并且在$ g $中几乎是免费的。我们还提供了一个条件,以确定在合并下是否保留了一组中强的准清理性。

Given a graph of groups $\mathcal{G} = (Γ, \{G_v\}, \{G_e\})$ with certain conditions on vertex groups and $G$ acts acylindrically on its Bass-Serre tree $T$. Let $H$ be a finitely generated subgroup of $G$. We prove the following statements equivalence: $H$ has finite height, $(G, T, H)$ is a $A/QI$--triple, $H$ is strongly quasiconvex and virtually free in $G$. We also give a condition to determine whether strong quasiconvexity in a group is preserved under amalgams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源