论文标题
使用计算图上的多日流量数据来估算概率动态起源死亡需求
Estimating probabilistic dynamic origin-destination demands using multi-day traffic data on computational graphs
论文作者
论文摘要
运输中的系统级决策需要了解网络流的日常变化,这需要对网络上的概率动态旅行需求进行准确的建模和估算。大多数现有研究估计了确定性动态起源点(OD)需求,而需求和流量的日常变化被忽略了。由于时空网络的复杂性和高维问题的计算强度,估计动态OD需求的概率分布是有挑战性的。随着大量流量数据的可用性和高级计算方法的出现,本文开发了一个数据驱动的框架,该框架使用多日数据解决了概率动态原产性原产地点需求估计(PDODE)问题。使用不同的统计距离(例如LP-NORM,WASSERSTEIN距离,KL差异,Bhattacharyya距离)并进行比较以测量估计的交通条件和观察到的交通条件之间的差距,并且发现2-Wasserstein距离在估计平均偏差和标准偏差方面具有平衡的精度。所提出的框架被投入到计算图中,并开发了一个重新分析技巧,以同时估计概率动态OD需求的平均值和标准偏差。我们证明了在小型和现实世界网络上提出的PDODE框架的有效性和效率。特别是,提出的PDODE框架可以通过考虑需求变化来减轻过度拟合问题。总体而言,开发的PDODE框架为公共机构提供了一种实用的工具,以了解需求随机性的来源,评估网络流的日常变化,并为智能运输系统做出可靠的决策。
System-level decision making in transportation needs to understand day-to-day variation of network flows, which calls for accurate modeling and estimation of probabilistic dynamic travel demand on networks. Most existing studies estimate deterministic dynamic origin-destination (OD) demand, while the day-to-day variation of demand and flow is overlooked. Estimating probabilistic distributions of dynamic OD demand is challenging due to the complexity of the spatio-temporal networks and the computational intensity of the high-dimensional problems. With the availability of massive traffic data and the emergence of advanced computational methods, this paper develops a data-driven framework that solves the probabilistic dynamic origin-destination demand estimation (PDODE) problem using multi-day data. Different statistical distances (e.g., lp-norm, Wasserstein distance, KL divergence, Bhattacharyya distance) are used and compared to measure the gap between the estimated and the observed traffic conditions, and it is found that 2-Wasserstein distance achieves a balanced accuracy in estimating both mean and standard deviation. The proposed framework is cast into the computational graph and a reparametrization trick is developed to estimate the mean and standard deviation of the probabilistic dynamic OD demand simultaneously. We demonstrate the effectiveness and efficiency of the proposed PDODE framework on both small and real-world networks. In particular, it is demonstrated that the proposed PDODE framework can mitigate the overfitting issues by considering the demand variation. Overall, the developed PDODE framework provides a practical tool for public agencies to understand the sources of demand stochasticity, evaluate day-to-day variation of network flow, and make reliable decisions for intelligent transportation systems.