论文标题

通过双转化器解开时空功能性脑网络

Disentangling Spatial-Temporal Functional Brain Networks via Twin-Transformers

论文作者

Yu, Xiaowei, Zhang, Lu, Zhao, Lin, Lyu, Yanjun, Liu, Tianming, Zhu, Dajiang

论文摘要

如何识别和表征功能性大脑网络(BN)是基础,以获取对大脑组织结构机制的系统级别的见解。当前的功能磁共振(fMRI)分析高度依赖于空间(例如静止状态网络)或时间(例如任务刺激)域中特定模式的先验知识。此外,大多数方法旨在找到群体的通用功能网络,很少研究个体特定的功能网络。在这项工作中,我们提出了一个新颖的双转化器框架,以自我监督的方式同时推断空间和时间空间中的共同和单个功能网络。第一个变压器将空间区域的信息作为输入获取并生成空间特征,而第二个变压器将与时间相关的信息作为输入和输出时间特征。通过相互作用(权重共享)和两个变压器之间的约束,将空间和时间特征进一步分为常见和单个特征。我们将TwinTransFormer应用于Human Connectome Project(HCP)电动机Task-FMRI数据集,并确定了多个通用大脑网络,包括与任务相关和静止状态网络(例如默认模式网络)。有趣的是,我们还成功地恢复了与任务刺激无关的一组个人特定网络,并且仅存在于个人层面。

How to identify and characterize functional brain networks (BN) is fundamental to gain system-level insights into the mechanisms of brain organizational architecture. Current functional magnetic resonance (fMRI) analysis highly relies on prior knowledge of specific patterns in either spatial (e.g., resting-state network) or temporal (e.g., task stimulus) domain. In addition, most approaches aim to find group-wise common functional networks, individual-specific functional networks have been rarely studied. In this work, we propose a novel Twin-Transformers framework to simultaneously infer common and individual functional networks in both spatial and temporal space, in a self-supervised manner. The first transformer takes space-divided information as input and generates spatial features, while the second transformer takes time-related information as input and outputs temporal features. The spatial and temporal features are further separated into common and individual ones via interactions (weights sharing) and constraints between the two transformers. We applied our TwinTransformers to Human Connectome Project (HCP) motor task-fMRI dataset and identified multiple common brain networks, including both task-related and resting-state networks (e.g., default mode network). Interestingly, we also successfully recovered a set of individual-specific networks that are not related to task stimulus and only exist at the individual level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源