论文标题
通过模型预测控制模拟交互运动
Simulating Interaction Movements via Model Predictive Control
论文作者
论文摘要
我们提出了一种使用模型预测控制(MPC)模拟与计算机相互作用的运动的方法。该方法从从最佳反馈控制(OFC)角度理解交互开始。我们假设用户旨在最大程度地减少内部成本功能,但要受人体和交互式系统施加的限制。与HCI中使用的以前的线性方法相反,MPC可以计算非线性系统的最佳控件。这使我们可以使用最先进的生物力学模型并处理几乎所有交互式系统中发生的非线性。我们的模型不是扭矩致动,而是采用直接作用于关节的二阶肌肉。我们比较了三种不同的成本功能,并通过四种不同的相互作用技术在FITTS定律类型指向研究中评估模拟轨迹与用户运动。我们的结果表明,距离,控制和关节加速成本的组合与单个用户的运动相匹配,并以使用用户之间差异范围内的精度预测运动。为了帮助HCI研究人员和设计师,我们介绍了CFAT,这是一种基于实验数据的联合驱动模型中最大自愿扭矩的新方法,并提供有关如何模拟不同用户,交互技术和任务的人类运动的实用建议。
We present a method to simulate movement in interaction with computers, using Model Predictive Control (MPC). The method starts from understanding interaction from an Optimal Feedback Control (OFC) perspective. We assume that users aim to minimize an internalized cost function, subject to the constraints imposed by the human body and the interactive system. In contrast to previous linear approaches used in HCI, MPC can compute optimal controls for nonlinear systems. This allows us to use state-of-the-art biomechanical models and handle nonlinearities that occur in almost any interactive system. Instead of torque actuation, our model employs second-order muscles acting directly at the joints. We compare three different cost functions and evaluate the simulated trajectories against user movements in a Fitts' Law type pointing study with four different interaction techniques. Our results show that the combination of distance, control, and joint acceleration cost matches individual users' movements best, and predicts movements with an accuracy that is within the between-user variance. To aid HCI researchers and designers, we introduce CFAT, a novel method to identify maximum voluntary torques in joint-actuated models based on experimental data, and give practical advice on how to simulate human movement for different users, interaction techniques, and tasks.