论文标题
均质化导致有限可塑性
A homogenization result in finite plasticity
论文作者
论文摘要
我们对积分功能进行了一项各种研究,该研究模拟了由有限型弹性塑性性和硬化的有限型材料的储存能量。假设该复合材料具有周期性的显微镜结构,我们在限制消失的周期性时建立了能量的$γ$结合。塑料变形属于$ \ mathsf {sl}(3)$的约束构成了分析的最大障碍,我们通过$ \ mathsf {sl}(3)$作为Finsler歧管来解决它。
We carry out a variational study for integral functionals that model the stored energy of a heterogeneous material governed by finite-strain elastoplasticity with hardening. Assuming that the composite has a periodic microscopic structure, we establish the $Γ$-convergence of the energies in the limiting of vanishing periodicity. The constraint that plastic deformations belong to $\mathsf{SL}(3)$ poses the biggest hurdle to the analysis, and we address it by regarding $\mathsf{SL}(3)$ as a Finsler manifold.