论文标题
二维Motter和LAI模型中的级联交通堵塞
Cascading traffic jamming in a two-dimensional Motter and Lai model
论文作者
论文摘要
我们使用Motter和LAI模型研究了在二维随机几何图上的级联流量阻塞。交通拥堵是由局部攻击无能力的圆形区域或一定尺寸的线以及对相等数量的随机节点的分散攻击引起的。我们调查了由于级联干扰而导致网络完全堵塞的攻击的临界大小,以及该临界大小如何取决于该图的平均程度$ \ langle k \ rangle $,在系统中的节点$ n $的数量,以及Motter和Lai模型的耐受性参数$α$α$。
We study the cascading traffic jamming on a two-dimensional random geometric graph using the Motter and Lai model. The traffic jam is caused by a localized attack incapacitating circular region or a line of a certain size, as well as a dispersed attack on an equal number of randomly selected nodes. We investigate if there is a critical size of the attack above which the network becomes completely jammed due to cascading jamming, and how this critical size depends on the average degree $\langle k\rangle$ of the graph, on the number of nodes $N$ in the system, and the tolerance parameter $α$ of the Motter and Lai model.