论文标题

C(x)确定X-固有的理论

C(X) determines X -- an inherent theory

论文作者

Mitra, Biswajit, Das, Sanjib

论文摘要

连续功能环的基本问题之一是提取C(x)确定X的那些空间,即研究X和Y,以使C(x)同构具有C(y)的同构意味着X同构具有y。该发展从Tychono回来了?谁首先指出了Tychono的必然性?此类问题的空间。后来,S.Banach和M. Stone以略有差异为独立证明,如果X是紧凑的Hausdor? Space,C(X)也确定了X。E.Hewitt通过引入Realmapact空间,后来梅尔文·亨里克森(Melvin Henriksen)和比斯瓦吉特·米特拉(Biswajit Mitra)最大程度地扩展了他们的作品。在本文中,我们试图开发一个关于此问题的固有理论,以掩盖文献中的所有作品,引入了所谓的p-colpact空间。

One of the fundamental problem in rings of continuous function is to extract those spaces for which C(X) determines X, that is to investigate X and Y such that C(X) isomorphic with C(Y ) implies X homeomorphic with Y . The development started back from Tychono? who first pointed out inevitability of Tychono? space in this category of problem. Later S.Banach and M. Stone proved independently with slight variance, that if X is compact Hausdor? space, C(X) also determine X. Their works were maximally extended by E. Hewitt by introducing realcompact spaces and later Melvin Henriksen and Biswajit Mitra solved the problem for locally compact and nearly realcompact spaces. In this paper we tried to develop an inherent theory of this problem to cover up all the works in the literature introducing a notion so called P-compact spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源