论文标题
Sepico:域自适应语义分段的语义引导像素对比度
SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation
论文作者
论文摘要
域的自适应语义分割试图通过利用在标记的源域上训练的监督模型来对未标记的目标域进行令人满意的密集预测。在这项工作中,我们提出了语义引导的像素对比(Sepico),这是一个新型的单阶段适应框架,突出了单个像素的语义概念,以促进跨域跨域的类别歧视和平衡像素表示的学习,最终增强了自我训练方法的性能。具体来说,为了探索适当的语义概念,我们首先研究了一种质心感知的像素对比度,该对比采用了整个源域的类别质心或单个源图像来指导判别特征的学习。考虑到语义概念中可能缺乏类别多样性的可能性,然后我们散发出分布观点的踪迹,以涉及足够数量的实例,即分布感知的像素对比度,在这种情况下,我们近似从标记源数据的统计数据中近似每个语义类别的真实分布。此外,这种优化目标可以通过隐式涉及无限数量的(DIS)相似对,从而得出封闭形式的上限,从而使其在计算上有效。广泛的实验表明,SEPICO不仅有助于稳定训练,还可以产生歧视性表示,从而在合成到现场和白天到夜间适应方案方面取得了重大进展。
Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on an unlabeled target domain by utilizing the supervised model trained on a labeled source domain. In this work, we propose Semantic-Guided Pixel Contrast (SePiCo), a novel one-stage adaptation framework that highlights the semantic concepts of individual pixels to promote learning of class-discriminative and class-balanced pixel representations across domains, eventually boosting the performance of self-training methods. Specifically, to explore proper semantic concepts, we first investigate a centroid-aware pixel contrast that employs the category centroids of the entire source domain or a single source image to guide the learning of discriminative features. Considering the possible lack of category diversity in semantic concepts, we then blaze a trail of distributional perspective to involve a sufficient quantity of instances, namely distribution-aware pixel contrast, in which we approximate the true distribution of each semantic category from the statistics of labeled source data. Moreover, such an optimization objective can derive a closed-form upper bound by implicitly involving an infinite number of (dis)similar pairs, making it computationally efficient. Extensive experiments show that SePiCo not only helps stabilize training but also yields discriminative representations, making significant progress on both synthetic-to-real and daytime-to-nighttime adaptation scenarios.