论文标题
传感器数据融合在顶级视图网格图中使用具有先进冲突的证据推理
Sensor Data Fusion in Top-View Grid Maps using Evidential Reasoning with Advanced Conflict Resolution
论文作者
论文摘要
我们提出了一种新方法,以结合基于异质传感器源估计的证据顶视图图。通常在此上下文中应用的Dempster的组合规则提供了不希望的结果,并具有高度冲突的输入。因此,我们使用更先进的证据推理技术,并通过对证据来源的可靠性进行建模来改善冲突解决方案。我们提出了一个数据驱动的可靠性估算,以使用Kitti-360数据集优化融合质量。我们将提出的方法应用于LiDAR和立体声相机数据的融合,并在定性和定量上评估结果。结果表明,我们提出的方法可鲁棒地结合了来自异质传感器的测量,并成功解决了传感器冲突。
We present a new method to combine evidential top-view grid maps estimated based on heterogeneous sensor sources. Dempster's combination rule that is usually applied in this context provides undesired results with highly conflicting inputs. Therefore, we use more advanced evidential reasoning techniques and improve the conflict resolution by modeling the reliability of the evidence sources. We propose a data-driven reliability estimation to optimize the fusion quality using the Kitti-360 dataset. We apply the proposed method to the fusion of LiDAR and stereo camera data and evaluate the results qualitatively and quantitatively. The results demonstrate that our proposed method robustly combines measurements from heterogeneous sensors and successfully resolves sensor conflicts.