论文标题
量子蒙特卡洛模拟中的标志问题
Sign Problem in Quantum Monte Carlo Simulation
论文作者
论文摘要
量子蒙特卡洛(QMC)模拟中的标志问题似乎是一个极其困难但有趣的问题。在本文中,我们在各种量子蒙特卡洛模拟技术中介绍了有关标志问题的起源的教学概述,范围从世界线和随机系列的扩张蒙特卡洛和旋转系统到确定性和动量空间量子量蒙特·蒙特·卡洛(Monte Monte Monte Carlo Monte Carlo)的相互作用效仿。我们指出了标志问题的基础依赖性,并总结了多年来治愈,轻松甚至利用标志问题的进展,例如对基础哈密顿式的对称分析,在写下分区功能以及许多其他许多方面的基础优化。此外,我们指出,尽管传统的传说在出现符号问题的情况下,QMC模拟中的平均符号与配置空间的时空体积相当快地零,但最近有突破性的突破表明并非总是如此,并且基于分区功能的属性,对于有限尺寸系统的分区功能,平均符号何时在平均范围内进行了范围的范围,并在范围内进行了范围的范围,并且在何时逐步缩放了一个范围的范围。对于扩展的哈伯德型和量子Moiré晶格模型,已成功地进行了具有代数符号问题的费米子QMC模拟。
Sign problem in quantum Monte Carlo (QMC) simulation appears to be an extremely hard yet interesting problem. In this article, we present a pedagogical overview on the origin of the sign problem in various quantum Monte Carlo simulation techniques, ranging from the world-line and stochastic series expansion Monte Carlo for boson and spin systems to the determinant and momentum-space quantum Monte Carlo for interacting fermions. We point out the basis dependency of the sign problem and summarize the progresses to cure, ease and even make use of the sign problem over the years, such as symmetry analysis of the underlying Hamiltonian, basis optimization in writting down the partition functions and many others. Moreover, we state that although traditional lore saying that in case of sign problem, the average sign in QMC simulation approaches zero exponentially fast with the space-time volume of the configurational space, there are recent breakthroughs showing this is not always the case and based on the properties of the partition function for finite size systems, one could distinguish when the average sign has the usual exponential scaling and when it is bestowed with an algebraic scaling at the low temperature limit. Fermionic QMC simulations with such algebraic sign problems have been successfully carried out for extended Hubbard-type and quantum Moiré lattice models.